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a b s t r a c t

Phase-field simulations of spinodal decomposition in Fe–Cr alloys with dislocations were performed by
using the Cahn–Hilliard diffusion equation. The stress field of dislocations was calculated in real space
via Stroh’s formalism, while the composition inhomogeneity-induced stress field and the diffusion equa-
tion were numerically calculated in Fourier space. The simulation results indicate that dislocation stress
field facilitates, energetically and kinetically, spinodal decomposition, making the phase separation faster
and the separated phase particles bigger at and near the dislocation core regions. A tilt grain boundary is
thus a favorable place for spinodal decomposition, resulting in a special microstructure morphology,
especially at the early stage of decomposition.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Grain boundaries and dislocations are thermodynamically
favorable sites for precipitates. The profile of grain boundaries or
a dislocation network may control the morphology and distribu-
tion of precipitates. Theoretical analysis based on thermodynamics
has been carried out to study the energy change before and after
precipitation. For example, Cahn [1] theoretically calculated the
activation energy to form an incoherent precipitate on a disloca-
tion. His results show that the nucleation energy decreases even
more rapidly with increasing thermodynamic driving force, than
does the nucleation energy for homogeneous nucleation, becoming
zero at a finite value of the supersaturation. Dollins [2] analyzed
the free energy change induced by a coherent precipitate on a dis-
location. Assuming that the strain field of the dislocation was unal-
tered by the precipitate, he calculated the interaction energy with
the consideration of the precipitate shape and the elastic misfit be-
tween the precipitate and the matrix [2]. In addition to the thermo-
dynamic analysis, the kinetics of stress-assisted precipitation on
dislocations has also been investigated [3–5] because the morphol-
ogy and distribution of precipitates may be finally determined by
the kinetic process. Cottrell and Bilby [3] gave an approximate cal-
culation of the stress-assisted precipitation on dislocations by
neglecting the diffusion flux induced by concentration gradient.
Therefore, their result is more accurate at the very early stages of
precipitation. Ham [4] developed a kinetic theory for the rate of
stress-assisted precipitation on dislocations by including both
ll rights reserved.

echanical Engineering, Hong
er Bay, Kowloon, Hong Kong,
concentration gradient- and stress gradient-induced diffusion
fluxes. He first calculated the time-dependent rate of precipitation
on an isolated dislocation and then used the results to calculate the
short-time part of the precipitation curve for an array of disloca-
tions, while the long-time part of the precipitation curve was
established by using steady-state solutions to the diffusion equa-
tion with a variational procedure. Clearly, thermodynamic analysis
and kinetic calculations must be combined together and solved
simultaneously to predict the morphology and distribution of
precipitates, which leads to the development of phase-field
simulations.

Phase-field simulations are based on fundamental principles of
thermodynamics and kinetics and thus are powerful in prediction
of the temporal evolution of microstructures in materials [6–10]. In
a phase-field model, thermodynamic energies are described in
terms of a set of continuous order parameters. The temporal evolu-
tion of a microstructure is obtained by solving kinetics equations
that govern the time-dependence of the spatially inhomogeneous
order parameters. Phase-field simulations do not make any prior
assumptions about transient microstructures, which may appear
during a phase transformation path, and about transformation cri-
teria. Phase transformation is a direct consequence of the minimi-
zation process of the total free energy of an entire simulated
system.

Phase-field simulations of spinodal decomposition are based on
the Cahn–Hilliard diffusion equation [11,12], in which thermody-
namic energies are described in terms of the solute concentration.
Recently, phase-field simulations have been conducted to study
spinodal decomposition in alloys with dislocations [13–15] and
to investigate dislocation formation and dislocation dynamics
[16–19]. For instance, Léonard and Desai [13] conducted phase-
field simulations of spinodal decomposition in an isotropic alloy
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Fig. 1. The miscibility gap of Fe–Cr alloy phase diagram and the two simulated
alloys. The solid line represents the phase separation curve and the dotted line is
the spinodal decomposition curve.
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with dislocations. They derived the stress field of dislocations in an
infinite medium in real space and conducted the simulations with
periodic boundary conditions in Fourier space. Applying Fourier
transformation with the periodic boundary conditions implies that
a simulated system is a representative cell in a two- or three-
dimensional periodic array of cells. Thus, the stress field of disloca-
tions in the representative cell should be calculated from disloca-
tions in all cells of the periodic array. Only when the
representative cell was sufficiently large, the effect of periodic
boundary conditions on the stress field of the dislocations might
be approximately ignored. Their results illustrate that the decom-
position process was accelerated when the dislocation density in-
creased [13]. Hu and Chen [20] investigated coherent
precipitation around an edge dislocation in an anisotropic medium.
The stress field of a dislocation was solved in Fourier space with
the periodic boundary conditions by using Mura’s [21] dislocation
eigenstrain method. They found that a direct use of the dislocation
eigenstrain method resulted in a significant oscillation in the stress
field. This is because Mura’s [21] dislocation eigenstrain method is
valid for an infinite domain, rather than for a finite representative
cell. They proposed two approaches to get rid of the oscillation. The
first one is to calculate a dislocation loop and the other is to use a
Gaussian function to describe the Burgers vector distribution. Their
results show that coherent nucleation of a new phase may become
barrierless due to the dislocation stress field [20]. Ni and He [14]
and Hu and Chen [15], by using the dislocation eigenstrain method
[21], investigated the composition pattern of spinodal decomposi-
tion in thin films with subsurfacial and interfacial dislocation ar-
rays, respectively [14,15]. Their results show that the periodic
stress field associated with the dislocation array leads to a direc-
tional phase separation and the formation of ordered mesoscale
microstructures. When the dislocation periodicity is small, the
wavelength of the ordered microstructure tends to have the same
periodicity as the dislocation array.

The present study simulates the phase separation process of
Fe–Cr alloys with dislocations by using the thermodynamic
function of the alloys. Fe–Cr alloys have found wide applica-
tions in nuclear power plants [22–24] due to their higher swell-
ing resistance, high-corrosion resistance and good mechanical
properties [25,26]. The mechanical properties of Fe–Cr alloys
depend greatly on the morphology and profile of spinodal
decomposition products of Fe-rich a phase and Cr-rich a0 phase
[27]. That is why intensity research has been carried out on
spinodal decomposition in Fe–Cr alloys, especially on the mor-
phology and profile of spinodal decomposition products. For
example, Miller et al. [28] and Hyde et al. [29,30] conducted
comprehensive experimental, theoretical and numerical investi-
gations of spinodal decomposition in Fe–Cr alloys. They found
a power law for the evolution of spinodal decomposition-in-
duced microstructures and their experimental data illustrated
fractal interfaces between Fe-rich a and Cr-rich a0 regions. How-
ever, the interaction between dislocations and spinodal decom-
position in Fe–Cr alloys has not been systematically studied yet.
That motivates us to comprehensively investigate the role of
dislocations in spinodal decomposition of Fe–Cr alloys by using
phase-field simulations.

2. Phase-field model

In phase-field simulations, the concentration of an alloy is usu-
ally taken as the order parameter. The temporal evolution of the
concentration is described by the Cahn–Hilliard diffusion equation
[11,12],

@cðx; tÞ
@t

¼ r � M � r dF
dc

� �� �
ð1Þ
where M denotes the mobility, c is the atom fraction of Cr element, F
is the total free energy of the simulated system, and x = (x1, x2, x3)
and t denote the spatial coordinates and time, respectively. The to-
tal free energy is given by

F ¼
Z

V
f ðcÞ þ 1

2
aðrcÞ2 þ Eel

� �
dV ; ð2Þ

where f(c) is the local chemical free energy density per unit volume,
the second term represents the concentration gradient energy per
unit volume, and Eel is the elastic energy density per unit volume.
Based on the regular solution approximation, the chemical free en-
ergy density per unit volume of a Fe–Cr alloy is given by

f ðcÞ ¼ 1
Vm

ð1� cÞG0
Fe þ cG0

Cr þXFeCrcð1� cÞ þ RT½c ln c
n

þð1� cÞ lnð1� cÞ�g; ð3Þ

where G0
Fe and G0

Cr are the standard molar Gibbs free energy of pure
Fe and Cr, respectively, XFeCr is the interaction parameter, R is gas
constant, T is the absolute temperature, and Vm denotes the molar
volume of the alloy. G0

Fe ¼ G0
Cr ¼ 0 was adopted as the reference en-

ergy level for the Gibbs free energy, XFeCr ¼ 20500� 9:68T [31]. The
first-order differential of f ðcÞ to composition can give the Fe–Cr
phase diagram, as shown in Fig. 1. The concentration gradient coef-
ficient is expressed by [32,33]

a ¼ 1
Vm

1
6

r2
0XFeCr; ð4Þ

where r0 is the interatomic distance at stress-free state and changes
with composition by simply obeying Vergard’s law. In the present
work, we assume the mobility to be a constant for simplicity. Then,
substituting Eq. (2) into Eq. (1) yields

@cðx; tÞ
@t

¼ Mr2 df ðcÞ
dc
� ar2c þ dEel

dc

� �
: ð5Þ

Eq. (5) is the fundamental equation to be solved in the phase-field
simulations.

2.1. Stress field induced by composition inhomogeneity

Elastic strain ein
ij induced by the composition inhomogeneity is

the difference between total strain eij and eigenstrain e0
ij [34]:

ein
ij ¼ eij � e0

ij: ð6Þ



Table 1
Elastic constants of Fe and Cr (1011 Pa) [38].

Fe Cr

C11 2.3310 3.5000
C12 1.3544 0.6780
C44 1.7830 1.0080
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The eigenstrain is given by e0
ij ¼ e0dijdc, in which e0 ¼ ð1=aÞ ðda=dcÞ

is the composition expansion coefficient of lattice parameter.
dc ¼ c � c0 with c0 being the nominal composition of the alloy,
and dij is the Kronecker-delta function. The total strain is related
to displacements ui by the kinematic equation:

ekl ¼
1
2

@uk

@xl
þ @ul

@xk

� �
: ð7Þ

Hook’s law links elastic stress tensor to elastic strain tensor as

rin
ij ¼ Cijklein

kl ¼ ðekl � e0
klÞ ð8Þ

with elastic constant tensor Cijkl. For a given distribution of compo-
sition, the system should always satisfy mechanical equilibrium,
which requires

@rin
ij

@xj
¼ 0 ð9Þ

for a body-force-free system, because elastic response is much fas-
ter than the diffusion process. If the elastic constants are assumed
to be independent of composition, the mechanical equilibrium can
be expressed by displacements and eigenstrains:

Cijkl
@2uk

@xj@xl
¼ Cijkl e0dkl

@dc
@xj

� �
: ð10Þ
Fig. 2. Phase separation with two edge dislocatio
Solving Eq. (10) in Fourier space, we have

~ukðkÞ ¼ �iGikðkÞr0
ijd~c ðkÞkj; ð11aÞ

where k ¼ ðk1; k2; k3Þ is the reciprocal space wave vector,
i ¼

ffiffiffiffiffiffiffi
�1
p

; Gik ðkÞ is the inverse tensor of G�1
ik ðkÞ ¼ Cijklkjkl, and

r0
ij ¼ Cijkle0dkl. The total strain in Fourier space is then given by

~eij ðkÞ ¼
i
2
½~uiðkÞkj þ ~ujðkÞki�: ð11bÞ
2.2. Stress field of dislocations

For two-dimensional linear anisotropic elasticity, Stroh’s for-
malism [35] gives the general solutions,

u ¼ AfðzaÞ þ AfðzaÞ; ð12aÞ

/ ¼ BfðzaÞ þ BfðzaÞ; ð12bÞ

where u and / are the displacement and stress function vectors,
respectively, A and B are the eigenvector matrixes determined by
the elastic constants and orientation of the alloy sample;
fðzaÞ ¼ ½f1ðz1Þ; f 2ðz2Þ; f 3ðz3Þ�T is an analytic vector of
za ¼ x1 þ pax2ða ¼ 1;2;3Þ to be determined by boundary condi-
tions; and pa with Im(pa) > 0 is the eigenvalue of the eigen-equation

Nn ¼ pn: ð13aÞ

In Eq. (13a),

n ¼
A

B

� �
ð13bÞ

is the eigenvector with A and B being the column vectors of A and B,
respectively; and the matrix N is given by
ns in the c0 = 0.2 Fe–Cr alloy aged at 535 K.
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Fig. 3. Composition evolution (a) through the dislocation center along the x�2
direction in Fig. 2 and (b) though the center of particle F along the x�2 direction in
Fig. 2f.

Fig. 4. Phase separation without any dislocations in the c0 = 0.2 Fe–Cr alloy aged at
535 K.
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N ¼
N1 N2

N3 NT
1

� �
; ð13cÞ

with

N1 ¼ �T�1RT ; N2 ¼ T�1 ¼ NT
2; N3 ¼ RT�1RT � Q ¼ NT

3; ð13dÞ

where

Q ik ¼ Ci1k1; Rik ¼ Ci1k2; Tik ¼ Ci2k2: ð13eÞ

Matrixes A and B have the following properties:

AAT þ AAT ¼ BBT þ BBT ¼ 0; ð14aÞ

BAT þ BAT ¼ ABT þ ABT ¼ I; ð14bÞ

where I is the identity matrix. The stress field is calculated from the
stress function vector as:

ri2 ¼ /i;1; ri1 ¼ �/i;2: ð15Þ

For a line dislocation located at zd
a in an infinite body, the two-

dimensional solution is given with the analytic vector in the form
of [36,37]

FðzaÞ ¼ ln za � zd
a

	 
� � 1
2pi

BT b; ð16Þ

where the angle bracket denotes a diagonal matrix and
b ¼ ðb1; b2; b3ÞT is the Burgers vector of the dislocation. Using
superposition, we have the analytic vector for periodic dislocations
with the same Burgers vector in an infinite space. If there is only a
dislocation located at x1;i and x2;i in the representative cell, the ana-
lytic vector is given by

fi ¼
X1

m¼�1

X1
n¼�1

ln ðx1 þ pax2Þ � ðmLx1 þ panLx2 Þ

�*

þðx1;i þ pax2;iÞ
��� 1

2pi
BT bi; ð17Þ
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where Lx1 and Lx2 are the dimensions of the representative cell in the
x1 and x2 directions, respectively, and bi is the Burgers vector of the
dislocation. Using the basic sum formula

P1
n¼�1

1
nþ a ¼ p cotpa, we

reduce Eq. (17) to

fi ¼
X1

m¼�1
ln sin p ðx1 þ pax2Þ � ðx1;i þ pax2;iÞ �mLx1

�paLx1

� �� �* +

� 1
2pi

BT bi: ð18aÞ

A small angle tilt grain boundary can be regarded as a dislocation
wall with the relationship that h = b/D, where h is the tilt angle, b
is the Burger vector, and D is the dislocation spacing. For a disloca-
tion wall parallel to the x2 direction, Eq. (18a) is re-written as

fi ¼
X1

m¼�1
ln sin p

ðx1 þ pax2Þ � ðx1;i þ pax2;iÞ �mLx1

�paD

� �� �* +

� 1
2pi

BT bi: ð18bÞ

The analytic vector for n dislocations in the representative cell is
thus given by

f ¼
Xn

i¼1

fi: ð19Þ
The dislocation stress can be obtained from Eq. (12a) by using the
relation of displacement and strain.

ed
kl ¼

1
2

@ud
k

@xl
þ @ud

l

@xk

� �
: ð20Þ

The total elastic strain of system includes the compositional inho-
mogeneity-induced strain ein

ij and the strain ed
ij induced by

dislocations

et
ij ¼ ein

ij þ ed
ij: ð21Þ

Then, the elastic strain energy density per unit volume is given by

Eel ¼
1
2

Cijklet
ije

t
kl ¼

1
2

Cijkl eij � e0
ij þ ed

ij

� �
ekl � e0

kl þ ed
kl

	 

: ð22Þ
2.3. Numerical calculations

In the present simulations, the edge dislocation was introduced
on the ð1 �10Þ slip plane with Burger’s vector b ¼ a0=2½111�, where
a0 is the lattice constant of the Fe–Cr alloy with c = 0.5. The magni-
tude of Burger’s vector was assumed to be a constant independent
of composition and used as a length unit. The coordinates were
constructed with axes x, y and z along the ½1 �10�, ½111� and ½�1 �12�
directions, respectively. We introduce the following dimensionless
parameters,

x� ¼ x=jbj; t� ¼ tMlVm=jb2j; f � ¼ f=l; a� ¼ a=ðljb2jÞ; E�el

¼ Eel=l;

where l is the shear modulus of Cr, jbj is the magnitude of Burgers
vector b ¼ a0=2½111�, the grid size is chosen as Dx1 ¼ Dx2 ¼ jbj.

Using the dimensionless variables, Eq. (5) takes the form:

@cðx�; t�Þ
@t�

¼ ðr�Þ2 df �ðcÞ
dc
� a�ðr�Þ2c þ dE�el

dc

� �
: ð23Þ

Fourier transformation of Eq. (23) yields

@cðk�; t�Þ
@t�

¼ �ðk�Þ2 df �ðcÞ
dc
þ dE�el

dc

� �
k�
þ a�ðk�Þ2cðk�Þ

� �
; ð24Þ

where k* is the magnitude of k�, cðk�Þ and df �ðcÞ
dc þ

dE�el
dc

� �
k�

are the Fou-
rier transformation of cðr�Þ and df �ðcÞ

dc þ
dE�el
dc , respectively. Solving Eq.

(24) numerically gives the temporal local composition in Fourier
space and the results in real space are then obtained by inverse Fou-
rier transformation. The simulation cell length is Lx1 ¼ NDx1 and
Lx2 ¼ MDx2, where N and M and Dx1 and Dx2 are the grid numbers
and grid size along the x1 and x2 directions, respectively. The dimen-
sionless grid sizes are set to be Dx�1 ¼ 1:0 and Dx�2 ¼ 1:0 in the sim-
ulations. The lattice parameters are aFe ¼ 0:2866 nm and
aCr ¼ 0:2882 nm [36] and the concentrations are ca0 ¼ 0:95 and
ca ¼ 0:05 for c0 ¼ 0:2 alloy aged at 535 K. So, the composition
expansion coefficient of lattice parameter is approximately
e0 ¼ ðaCr � aFeÞ=½aFeðca0 � caÞ� ¼ 0:006.

The elastic constants of Fe and Cr are listed in Table 1 and Ver-
gard’s law is used to calculate the elastic constants of a Fe–Cr alloy.

3. Results and discussion

The simulations are performed with a N �M = 256 � 256 repre-
sentative cell. The dimensionless time step is Dt* = 0.03. To trigger
simulations, we may add a random Gaussian distributed fluctua-
tion in the dimensionless concentration to the representative cell
at the beginning of simulations. The interval of the initial fluctua-
tion is set to be [�0.0025, 0.0025] in the present work, which is
much smaller than [�0.1, 0.1] used in Ref. [13]. The initial fluctua-
tion of an infinitesimal or zero magnitude allows us to focus on the



Fig. 7. Phase separation with two edge dislocations in the c0 = 0.2 Fe–Cr alloy aged at 535 K without any initial fluctuation.

Fig. 8. Phase separation with a tilt grain boundary of h = 9.55� along line x�1 ¼ 128 in the c0 = 0.2 Fe–Cr alloy aged at 535 K.
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dislocation effect. Moreover, the periodic boundary condition re-
quires that a stress component at the left boundary, rl, should be
the same as that at the right boundary, rr and Eq. (18) can be only
approximately calculated. In the present study, a relative error of
d = |(rl � rr)/rr| = 6.8% was used.

3.1. Early stage of spinodal decomposition

The Fe–Cr alloy with a nominal concentration of c0 = 0.2 was
quenched from a homogeneous solid solution at a high tempera-
ture to temperature 535 K, as marked by point A in Fig. 1, and then
aged at 535 K. Fig. 2a–f show the phase separation process of the
alloy, where the red and dark blue colors illustrate Cr-enriched
and Cr-depleted regions, respectively. To study the effect of dislo-
cations on the decomposition process, two edge dislocations with
Burgers’ vectors of b ¼ a0=2½111� and b ¼ a0=2½�1 �1 �1� are located
at coordinates (128, 118) and (128, 138) in the 256 � 256 repre-
sentative cell, respectively. The dimensionless distance between
the two dislocations is d = 20. The simulation exhibits that Cr
atoms enrich themselves in the tensile stress regions of the two
dislocations within a very short time, t* = 100, and Cr-depleted re-
gions accompanied with the Cr-enriched regions are formed simul-
taneously. At t* = 100, the Cr-concentration in the Cr-enriched
regions is still much lower than the equilibrium concentration,
ca0 ¼ 0:95, of the a0 phase, as shown in Fig. 3a. The two Cr-enriched
clusters enrich in Cr-content and grow in size continuously. At
t* = 400, the Cr-content in the centers of the two Cr-enriched clus-
ters reaches the equilibrium concentration of the a0 phase, as
shown in Fig. 3a, while the Cr-concentration in the Cr-depleted re-
gions does not meet the equilibrium concentration, ca ¼ 0:05, of
the a phase. At t* = 1000, the two Cr-depleted regions merge into
a region enclosing the two Cr-enriched clusters, as shown by
Fig. 2c. At t* = 5500, the Cr-enriched clusters become the a0 phase
Fig. 9. Phase separation with an edge dislocatio
particles and the adjacent Cr-depleted region becomes the a phase,
as shown in Fig. 3a. In the early stage of aging, phase separation oc-
curs only at the dislocation core regions and the Cr-concentration
seems to be roughly homogeneous in the rest regions even so
the initial fluctuation is applied randomly to the entire representa-
tive cell. Eventually at t* = 4000, Cr-enriched clusters appear in re-
gions far away from the dislocations. In contrast, it takes only
t* = 400 for the Cr-enriched clusters at the dislocation cores to
reach the same size of the biggest Cr-enriched cluster formed at
t* = 4000 in regions far away from the dislocations. Clearly, disloca-
tions accelerate the phase separation process. As aging going on,
more and more Cr-enriched clusters are formed in regions far away
from the dislocations and the formed Cr-enriched clusters evolve
to the a0 phase, as shown in Fig. 2e. At t* = 5500, the decomposition
process is over and the final morphology is shown in Fig. 2f. The
size of the a0 phase particles around the dislocations is bigger than
that in other regions. In comparison with the evolution of Cr-con-
centration at and near the dislocations shown in Fig. 3a, Fig. 3b
illustrates the evolution of Cr-concentration of a a0 phase particle,
which is some distance away from the dislocations, as marked by
letter F in Fig. 2f. The Cr-enriched cluster is formed at t* = 3800,
as shown in Fig. 3b, and its concentration profile at t* = 4000 is
similar to that of the Cr-enriched cluster at the dislocation cores
at t* = 400. The results show again that dislocations promote the
decomposition process. After phase separation, there is a composi-
tion jump from the a0 phase with the maximum Cr-concentration
to the a phase with the minimum Cr-concentration when crossing
an interface between the a0=a particles. This composition jump oc-
curs within a narrow region ranging from 3Dx�1 to 5Dx�1.

As a comparison, Fig. 4 shows the phase separation process
without dislocations in the same alloy aged at the same tempera-
ture with the same initial fluctuation, as those described above for
Figs. 2 and 3. We may define an incubation time as the time at
n in the c0 = 0.45 Fe–Cr alloy aged at 673 K.
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which the equilibrium Cr-concentration of the a0 phase first ap-
pears in the simulated system. Fig. 5 shows the composition evolu-
tion of the particle labeled with an arrow in Fig. 4b and c. The
incubation time is about t* = 4000 without dislocations, while the
incubation time is about t* = 400 at the dislocation cores. Compar-
ing Fig. 3b with Fig. 5 indicates that the incubation time in regions
far away from dislocations and the incubation time in the same
simulated system without dislocations are almost the same, indi-
cating that the dislocation effect on the incubation time is limited
to a small region near the dislocation cores. Fig. 6 plots the nucle-
ation time, for particles labeled with letters A, B, C, D, E and F in
Fig. 2f, versus the distance from the dislocation core with coordi-
nates (128, 118) to each particle center. Fig. 6 shows that the incu-
bation time increases quickly to a constant value as the distance
increases. The result demonstrates that the dislocation effect on
the incubation time is limited to a local region near the dislocation.

In spinodal decomposition, any small composition fluctuation is
able to induce the phase separation. If there are dislocations in the
alloy, the dislocation stress field is inhomogeneous and may trigger
the decomposition process. Thus, spinodal decomposition may be
started with an initial fluctuation of an infinitesimal or zero mag-
nitude in the simulated system, where atom migration is driven
by the dislocation stress field. For example, Fig. 7 shows the simu-
lation phase separation process of the c0 = 0.2 Fe–Cr alloy aged at
0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

C
om

po
si

tio
n

Position
(a)  t*=100 

(c)  t*=1000 

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

C
om

po
si

tio
n

Position

Fig. 10. Composition evolution through the dislo
535 K without any initial fluctuation. Two edge dislocations with
Burgers’ vectors of a0=2½111� and a0=2½�1 �1 �1� are located at coordi-
nates (128, 118) and (128, 138), respectively. The tensile stress re-
gions of the dislocations become Cr-enriched regions very soon, as
shown in Fig. 7a, which is similar to the early stage phase separa-
tion shown in Fig. 2a–c. As aging going on, the a0 phase continu-
ously precipitates around the dislocations and the nearby regions
become Cr-depleted. At t* = 2500, the composition is still homoge-
neous and remains the nominal concentration in the regions far
away from the dislocations, as shown in Fig. 7b. After aging of
t* = 10,000, the a0 phase precipitates everywhere far away from
the dislocations. Finally, the simulated system reaches the equilib-
rium state at t* = 12,000. As mentioned above, the phase equilib-
rium is reached at t* = 5500 if the initial fluctuation is added, as
shown in Fig. 2f. The results indicate that the phase separation pro-
cess with two dislocations is slower without initial fluctuation
than that with the initial fluctuation. Fig. 7 shows that the a0 phase
particles are symmetrically distributed around the two-dislocation
center, thereby implying that the symmetrical stress field of the
dislocations controls the atom migration and arrangement process
if no initial fluctuation is added. In this case, the final particles size
near the dislocations is bigger than that in other places.

Tilt grain boundaries may play an important role in the micro-
structure evolution. Consider a tilt grain boundary with h = 9.55�,
(b)  t*=600

(d)  t*=2000 
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cation center along the x�2 direction in Fig. 9.
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formed by an edge dislocation wall with Burgers vector a0=2½111�,
along the line of x�1 ¼ 128 in the simulation cell, as shown in Fig. 8.
The Cr-cluster is formed at the tensile stress side of the dislocations
at the initial stage, as shown in Fig. 8a. Then, the Cr-depleted re-
gions are formed at the two sides of the tilt grain boundary and
the other places are still homogeneous at this time, as shown in
Fig. 8b. At t* = 3500, some of the a0 phase particles have precipi-
tated in regions far from the tilt grain boundary. When the system
reaches the equilibrium state, there is a band region of a0 phase
along the tilt grain boundary, and Cr-depleted regions beside the
band. The morphology in regions far away from the tilt boundary
looks normal.

3.2. Final spinodal decomposition pattern

As mentioned above, dislocations enhance greatly the phase
separation process. Particularly at the early stage of aging, the
phase separation occurs only at and near dislocations. In this part,
we study the dislocation effect on the modulated structure of a
c0 = 0.45 Fe–Cr alloy aged at 673 K (point B in Fig. 1). Fig. 9 shows
the spinodal decomposition process with an edge dislocations of
Burgers’ vector of a0=2½111� located at coordinates (128, 128)
and a random initial fluctuation with the interval [�0.0025,
0.0025], which are the same as that used before for Figs. 2 and 3.
At the initial stage, Cr atoms enrich and deplete themselves at
the dislocation core regions and reach the equilibrium concentra-
tion of ca0 ¼ 0:88 at t* = 600, as shown in Figs. 9a, b and 10b. This
stage is similar to that of the c0 = 0.2 alloy aged at 535 K with
two dislocations shown in Fig. 2a–c. However, the velocity of spin-
odal decomposition in regions far away from the dislocations is
faster than that in the c0 = 0.2 alloy aged at 535 K. In the regions
far away from the dislocations, as shown in Fig. 10c, the obvious
composition inhomogeneity occurs at t* = 1000 and the composi-
tion reaches the equilibrium at t* = 2000 in the c0 = 0.45 alloy aged
Fig. 11. Phase separation with a tilt grain boundary of h = 9.55� a
at 673 K, whereas the two corresponding times are t* = 3800 and
t*=4000 for the earlier precipitated particles in the c0 = 0.2 alloy
aged at 535 K, as shown in Fig. 3b. The entire spinodal morphology
with a dislocations is featured by a dislocation modified modulated
structure, as shown in Fig. 9, meaning that the morphology near
the dislocations is determined by the dislocation stress field.

Fig. 11 shows the effect of a tilt grain boundary with h = 9.55�
along the line of x�1 ¼ 128 in the simulation cell for the c0 = 0.45 al-
loy aged at 673 K. Comparing Fig. 11a with Fig. 8a indicates that
the initial composition variation in the c0 = 0.45 alloy is similar
to that in the c0 = 0.2 alloy. At time t* = 1100, obvious composition
fluctuation occurs in regions far away from the tilt grain boundary.
At t* = 1400, the Cr-depleted regions are formed beside the tilt
grain boundary and a0 phase precipitates at the regions far away
from the tilt grain boundary. When the system reaches the equilib-
rium state, as shown in Fig. 11d, the a0 phase has an unconnected
band shape beside the two Cr-depleted regions, while the regular
modulated spinodal morphology appears in the regions far away
from the tilt grain boundary. This is because the tilt grain boundary
can accommodate a finite amount of Cr atoms and leads to a local
change in composition along the tilt grain boundary.

Fig. 12a–c shows the morphologies of the c0 = 0.45 alloy aged at
673 K with a tilt grain boundary of tilt angles h = 1.91�, 5.73� and
9.55�, respectively. When the tilt angle of grain boundary is small,
1.91� or 5.73�, the Cr atoms enrich themselves in the tensile stress
side of the dislocations and form the horizontal orientation block
shape a0 phase in the tilt grain boundary region, as shown in
Fig. 12a and b. When the tilt angle is 9.55�, however, the continu-
ous a0 phase is formed along the tilt grain boundary with two Cr-
depleted regions beside. This is because when the tilt angle is lar-
ger, the dislocation spacing is shorter and a0 phase participates will
be accommodated by the dislocations. To investigate further the
effect of tilt grain boundaries on the decomposition morphology,
we simulate spinodal decomposition in the c0 = 0.45 alloy aged at
long line x�1 ¼ 128 in the c0 = 0.45 Fe–Cr alloy aged at 673 K.



Fig. 12. Phase separation with a tilt grain boundary along line x�1 ¼ 128 in (a)–(c), and with two tilt grain boundaries along lines x�1 ¼ 113 and x�1 ¼ 143 in (d)–(f) of different
tilt angles in the c0 = 0.45 Fe–Cr alloy aged at 673 K for t* = 3000.

Y.-S. Li et al. / Journal of Nuclear Materials 395 (2009) 120–130 129
673 K with two tilt grain boundaries along lines of x�1 ¼ 113 and
x�1 ¼ 143, respectively. Fig. 12d–f shows the decomposition mor-
phology for the tilt angles of h = 1.91�, 5.73� and 9.55�, respectively.
As expected, the decomposition morphology with two tilt grain
boundaries is correspondingly similar to that with one tilt grain
boundary, except that the horizontal orientation block shape for
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Fig. 13. Volume fraction of precipitates as a function of aging time for the c0 = 0.45
Fe–Cr alloy aged at 673 K, where one and two column tilt grain boundaries (GB) are
all with a tilt angle h = 5.73�.
h = 1.91� and 5.73� becomes big and there are two columns of a0

phase for h = 9.55� due to the two column tilt angle boundaries.
Since dislocations make the phase decomposition faster, the ef-

fect of tilt grain boundaries on the velocity of phase decomposition
is shown by plotting the volume fraction of a0 phase as a function
of aging time, as shown in Fig. 13 for the c0 = 0.45 alloy aged at
673 K. Since the volume fraction of a0 phase eventually reaches
its equilibrium value, the effect is significant at the initial stage
of phase decomposition. Before the time t* = 1000, the volume frac-
tion increase quickly with one and two tilt grain boundary than
that without or with only one dislocation and, as expected, the vol-
ume fraction with two tilt grain boundaries is larger than that of
with one tilt grain boundary. One dislocation has little influence
on the volume fraction because its influence is very much localized
at the dislocation core region.
4. Concluding remarks

The effect of dislocations and tilt grain boundary on the spinod-
al decomposition of Fe–Cr alloy was simulated by using the phase-
field method. The simulation results illustrate that the dislocation
stress field makes the phase separation faster near the area of dis-
locations. At the equilibrium state, the size of the a0 phases at the
dislocation is bigger than the place far away from the dislocations
for the low concentration alloys. The tilt grain boundary produces
different orientation morphologies as the tilt angle changes. Even
without any initial fluctuation in composition, a dislocation stress
field is able to trigger the phase separation process. It is generally
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believed that thermal fluctuation occurs at a finite temperature
and the thermal fluctuation is expressed in terms of Langevin force
in phase-field simulations [39]. In practice, the defined Langevin
force is usually so high such that a reduction factor is generally ap-
plied [40]. The magnitude of a used thermal fluctuation or a used
initial fluctuation changes simulation results if the magnitude is
too high [40]. To focus on the dislocation effect, we do it on pur-
pose in the present phase-field simulations by using an initial fluc-
tuation with a low magnitude or without using any initial
fluctuation.
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